STTR Phase I: High Throughput Discovery of Catalysts for Water Electrolysis Anion-Exchange Membranes

Project: Research

Abstract & Details

Description

Award ID: 2528067

The broader/commercial impact of this Small Business Technology Transfer (STTR) Phase I project lies in its potential to significantly advance the availability and affordability of clean hydrogen, a critical component for transitioning heavy industries for meeting atmospheric carbon targets. Today, most hydrogen is produced through fossil fuel-intensive processes, contributing substantially to undesirable emissions. On the other hand, the high cost and limited efficiency of existing renewable hydrogen production methods have constrained widespread adoption. By developing an innovative approach for hydrogen generation, this project addresses critical needs including cost efficiency, resource abundance, and scalability. Achieving competitively priced clean hydrogen can revolutionize industries such as steel manufacturing, ammonia production, and heavy transportation, directly aligning with national objectives for energy independence, economic growth, and environmental stewardship. Successful commercialization of this technology would position the United States as a leader in clean energy innovation, creating numerous high-skilled jobs and contributing substantially to tax revenues while fostering a resilient and robust industrial base. This Small Business Technology Transfer (STTR) project aims to advance a groundbreaking technology for hydrogen production, employing innovative anion exchange membrane water electrolyzers (AEMWE). The primary technical innovation involves an artificial intelligence-driven discovery process for catalysts and electrolyzer components that are exceptionally efficient, durable, and do not rely on critical minerals such as iridium and platinum. Current electrolyzers struggle to operate effectively at high current densities and face rapid degradation. The novel electrolyzer developed here uniquely incorporates advanced self-regenerating catalyst materials discovered through an AI-guided robotic experimental platform, offering unprecedented operational lifetimes while at current densities tenfold higher than existing systems. The project's research scope includes validating these newly discovered catalysts, optimizing their performance, and rigorously testing electrolyzer configurations under realistic operational conditions. This transformative approach represents a high-risk but highly impactful innovation, capable of rapidly accelerating progress toward affordable, environment-aligned hydrogen production on a global scale. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

NSF Program Director: Rajesh Mehta
StatusActive
Effective start/end date10/01/2509/30/26

Funding

  • H2C ENERGY INC.: $301,578.00

Active Fiscal Year

  • FY2026

Start Fiscal Year

  • FY2026

TIP Programs

  • NSF STTR Phase I
  • (SBIR/STTR) America's Seed Fund

Small Business

  • Yes

Key Technology Areas

  • Advanced Energy and Industrial Efficiency Technologies
  • (confidence score: 100%)

Technology Foci

  • Advanced Energy Generation Technologies
  • (confidence score: 100%)
  • Carbon management technologies
  • (confidence score: 98%)

Congressional District at Award

  • District n. 05 of Massachusetts

Current Congressional District

  • District n. 05 of Massachusetts

United States

  • Massachusetts

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint. Learn more about Elsevier's Fingerprint Engine here: https://beta.elsevier.com/products/elsevier-fingerprint-engine